
LINEAR ALGEBRA PRELIMINARIES

• Statistical characterization of random vectors

• Linear transformations of random vectors

• Reversal notation

• Correlation/covariance diagonalization

{ Eigenvector transformation

{ Triangular decomposition
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REPRESENTATION OF A RANDOM SIGNAL
AS A RANDOM VECTOR

2-2



EXPECTATION AND MOMENTS

EXPECTATION

E {ψ(x)} =
∞
−∞ψ(x)fx(x)dx

ψ(x): any quantity (scalar, vector, matrix) depending on random

vector x

MEAN VECTOR

mx = E {x}=
∞
−∞ xfx(x)dx
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EXPECTATION AND MOMENTS (cont'd.)

CORRELATION MATRIX

Rx = E xx∗T = E



x1
x2
...
xN

 x∗1 x∗2 · · · x∗N



=


E |x1|2 E x1x

∗
2 · · · E x1x

∗
N

E x2x
∗
1 E |x2|2 · · · E x2x

∗
N

... ... ...

E xNx
∗
1 E xNx

∗
2 · · · E |xN |2
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EXPECTATION AND MOMENTS (cont'd.)

COVARIANCE MATRIX

Cx = E (x−mx)(x−mx)∗T

Matrix elements are of the form E (xi −mi)(xj −mj)∗ .

Diagonal elements are E |xi −mi|2 (variances of components).

RELATION

Rx = Cx+mxm
∗T
x
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CORRELATION MATRIX PROPERTIES

1. Conjugate symmetry

Rx = R∗Tx

2. Positive semide¯nite

a∗TRxa ≥ 0
for any vector a.

Identical properties hold for the covariance matrix.
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CROSS-CORRELATION AND -COVARIANCE

DEFINITION

Rxy = E xy∗T and Cxy = E (x−mx)(y −my)∗T

RELATION

Rxy = Cxy +mxm
∗T
y

These matrices have no speci¯c properties except:

Rxy = R∗Tyx and Cxy = C∗Tyx

2-7



UNCORRELATED RANDOM VECTORS

Random vectors x and y are uncorrelated if

Cxy = E (x−mx)(y −my)∗T = [0]

This is equivalent to the statement Rxy =mxm∗Ty or

E xy∗T = E {x}E y∗T

Random vectors x and y are orthogonal if

Rxy = E xy∗T = [0]
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LINEAR TRANSFORMATIONS

y = Ax

MEAN VECTOR

E {y}= E {Ax} = AE {x} or . . . my = Amx

CORRELATION MATRIX

E yy∗T = E (Ax)(Ax)∗T = AE xx∗T A∗T

or . . . Ry = ARxA
∗T

COVARIANCE MATRIX

correspondingly . . . Cy = ACxA
∗T
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VECTOR AND MATRIX NORMS

EUCLIDEAN NORM OF A VECTOR

x
def
=

 N

k=1

|xk|2

1
2

= (x∗Tx)
1
2

EUCLIDEAN NORM OF A MATRIX

A
def
= max

x = 1

Ax

FROBENIUS NORM OF A MATRIX

A F
def
=

 M

i=1

N

j=1

|aij|2

1
2

= tr AA∗T
1
2

2-10



REVERSAL OPERATION

VECTOR

x =


x1
x2
...
xN



REVERSAL OF VECTOR

x̃ =


xN
xN−1
...
x1
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REVERSAL OPERATION (cont'd.)

MATRIX

A=

 a11 a12 a13
a21 a22 a23
a31 a32 a33



REVERSAL OF MATRIX

Ã=

 a33 a32 a31
a23 a22 a21
a13 a12 a11
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REVERSAL IN A LINEAR TRANSFORMATION

 y1y2
y3

=
 a11 a12 a13
a21 a22 a23
a31 a32 a33


 x1x2
x3

⇐⇒
 y3y2
y1

=
 a33 a32 a31
a23 a22 a21
a13 a12 a11


 x3x2
x1



y = Ax ⇐⇒ ỹ = Ãx̃
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PROPERTIES OF REVERSAL

Quantity Reversal

Matrix product AB ÃB̃

Matrix inverse A−1 (Ã)−1

Matrix conjugate A∗ (Ã)∗

Matrix transpose AT (Ã)T
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MEAN, CORRELATION AND COVARIANCE
FOR REVERSED RANDOM VECTORS

MEAN VECTOR

mx̃ = E {x̃}= m̃x

CORRELATION MATRIX

Rx̃ = E x̃x̃∗T = R̃x

COVARIANCE MATRIX

Cx̃ = C̃x

2-15



DIAGONALIZING THE CORRELATION MATRIX

TRANSFORMATION

x = Ax

such that

E xkx
∗
l = 0 k = l

(Vector components are orthogonal.)

METHODS

• Eigenvector decomposition (unitary transformation)

• Triangular decomposition (\causal" transformation)
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EIGENVECTOR TRANSFORMATION: BASICS

Rxe = λe implies e∗Tl Rxek = λke
∗T
l ek =

λk if l = k
0 if l = k

The transformation

x = E∗Tx =


−− e∗T1 −−
−− e∗T2 −−

...
−− e∗TN −−

x
produces the correlation matrix:

−− e∗T1 −−
−− e∗T2 −−

...
−− e∗TN −−

Rx
 | | |
e1 e1 · · · eN
| | |

 =

λ1 0

λ2
.. .

0 λN
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EIGENVECTOR TRANSFORMATION: SUMMARY

x = E∗Tx ⇐⇒ Rx = E∗TRxE= Λ

(transformation is unitary: EE∗T = I =⇒ E∗T = E−1)

CORRELATION MATRIX REPRESENTATION

Rx = EΛE∗T R−1x = EΛ−1E∗T

OTHER RELATIONS

|Rx| = |Λ| =
N

j=1

λj tr Rx = tr Λ=
N

j=1

λj
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SINGULAR VALUE DECOMPOSITION

X= UΣV∗T

U=

 | | |
u1 u2 · · · uK
| | |

 V =

 | | |
v1 v2 · · · vN
| | |

 (U,V unitary)

Σ=



σ1 0 · · · 0
0 σ2 · · · 0
... ... . . . ...
0 0 · · · σN
0 0 · · · 0
... ... ...
0 0 · · · 0


or Σ=


σ1 0 · · · 0 0 · · · 0
0 σ2 · · · 0 0 · · · 0
... ... . . . ... ... ...
0 0 · · · σK 0 · · · 0


σk ≥ 0
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USING SVD FOR EIGENVECTOR PROBLEMS

ESTIMATE FOR CORRELATION MATRIX

R̂x =
1

K
X∗TX (X is K ×N with K > N)

RELATIONS

Ê= V ; êk = vk, λ̂k =
1

K
σ2k k = 1,2, . . . , N
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COVARIANCE DIAGONALIZATION

�x = �E∗Tx ⇐⇒ C�x =
�E∗TCx�E= �Λ

where

�E=

 | | |
�e1 �e2 · · · �eN
| | |

 �Λ=


·λ1 0

·λ2
.. .

0 ·λN



Components ·xk of �x are uncorrelated.

·λk is the variance of ·xk.
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MULTIVARIATE GAUSSIAN DENSITY

REAL RANDOM VECTOR

fx(x) =
1

(2π)
N
2 |Cx|

1
2

e−
1
2(x−mx)TC−1x (x−mx)

COMPLEX RANDOM VECTOR

fx(x) =
1

πN |Cx|
e−(x−mx)∗TC

−1
x (x−mx)
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CONCENTRATION ELLIPSOIDS
(CONTOURS OF THE GAUSSIAN DENSITY)

Contour de¯ned by (x−mx)∗TC−1x (x−mx) = d2

• The transformation
�x = �E∗Tx

represents a rotation

of coordinates.

• d is called the
Mahalanobis distance.
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SIMULTANEOUS DIAGONALIZATION

Covariance matrices Cx(A) and Cx(B) are transformed to

diagonal forms Cy (A) and Cy (B).
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SIMULTANEOUS DIAGONALIZATION (cont'd.)

• Simultaneous diagonalization is acheived by the transforma-
tion

y = (�EA/B)
∗Tx

where �EA/B is the matrix of eigenvectors for the generalized

eigenvalue problem

Cx(A)�eA/B = ·λACx(B)�eA/B

• Covariance matrices Cx(A) and Cx(B) are transformed to

Cy (A) =
�ΛA and Cy (B) = I
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WHITENING TRANSFORMATIONS

• The transformation
y = (�Λ−1/2�E∗T)x

which results in the transformed covariance matrix Cy = I

is called a whitening transformation.

• All components of the random vector y have unit variance

and the concentration ellipsoid is a hypersphere.
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MAHALANOBIS TRANSFORMATION

• The Mahalanobis transformation

y = C
−1/2
x x where C

−1/2
x = �E�Λ−1/2�E∗T

is another whitening transformation.

• It di®ers from the previous one in that there is no net rotation

of the coordinate system.

• The matrix involved in the Mahalanobis transformation is

called the Hermitian square root of Cx and satis¯es

Cx = C
1/2
x C

1/2
x

∗T
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DIAGONALIZATION BY TRIANGULAR
DECOMPOSITION

x = L−1x ⇐⇒ Rx = L−1Rx(L−1)∗T = DL

L and DL are factors in the triangular decomposition

Rx = LDLL
∗T

L is lower triangular with unit diagonal elements,

DL is diagonal.
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QR FACTORIZATION

GENERAL FORM

X= QR where Q is unitary, R is upper triangular

X = Q1 Q2
R1
0

=


| |
| |
q1 · · · qN
| |
| |

Q1

| |
| |
qN+1 · · · qK
| |
| |


Q2



r11 r12 · · · r1N
0 r22 · · · r2N
... . . . ...
0 0 · · · rNN
0 0 · · · 0
... ... ...
0 0 · · · 0
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QR FOR TRIANGULAR DECOMPOSITION

ESTIMATE FOR CORRELATION MATRIX

R̂x =
1

K
X∗TX (X is K ×N with K > N)

RELATIONS

D̂L =
1

K
(diag (R1))

2 L̂ =
1√
K
R∗T1 D̂

−12
L
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TRIANGULAR DECOMPOSITION FORMS

Matrix
Lower-upper
decomposition

Upper-lower
decomposition

Rx Rx = LDLL
∗T Rx = U1DUU

∗T
1

R̃x R̃x = Ũ1D̃UŨ
∗T
1 R̃x = L̃D̃LL̃

∗T

2-31


